Respuesta :

Answer:

[tex]x=\dfrac{\sqrt6 \sqrt 2}{2}[/tex]

Step-by-step explanation:

We need to find the value of x.

Here, Hypotenuse = √6

Perpendicular = x

We know that,

[tex]\sin\theta=\dfrac{P}{H}[/tex]

So,

[tex]\sin(45)=\dfrac{x}{\sqrt6}\\\\x=\sin(45)\times \sqrt{6} \\\\x=\dfrac{\sqrt{6}}{\sqrt{2} }\\\\x=\dfrac{\sqrt{6}}{\sqrt{2} }\times \dfrac{\sqrt2}{\sqrt2}\\\\x=\dfrac{\sqrt6 \times \sqrt 2}{2}\\\\x=\dfrac{\sqrt6 \sqrt 2}{2}[/tex]

So, the value of x is equal to [tex]\dfrac{\sqrt6 \sqrt 2}{2}[/tex].