Respuesta :
The wavelength of this radio signal is equal to 3.18 meters.
Given the following data:
- Frequency = [tex]9.45 \times10^7[/tex] Hz.
- Speed of light = [tex]3 \times 10^8[/tex] m/s.
What is wavelength?
Wavelength can be defined as the distance between two (2) successive crests (troughs) of a wave.
How to calculate wavelength.
Mathematically, the wavelength of a wave is given by this formula:
[tex]\lambda = \frac{V}{F}[/tex]
Where:
- F is the frequency of a wave.
- V is the speed of a sound wave.
- [tex]\lambda[/tex] is the wavelength of a sound wave.
Substituting the given parameters into the formula, we have;
[tex]\lambda = \frac{3 \times 10^8}{9.45 \times10^7}[/tex]
Wavelength = 3.18 meters.
Find more information on waves here: brainly.com/question/23460034
The wavelength of the radio signal travel at speed of light is 3.17m.
Given the data in the question;
- Frequency of the radio wave; [tex]f = 9.45 * 10^{7}Hz = 9.45 * 10^{7} s^{-1}[/tex]
- Wavelength of a radio signal; [tex]\lambda = \ ?[/tex]
Wavelength
Wavelength the spatial period of a periodic wave. That is to say, when the shapes of waves are Wavelength , the distance over which they are repeated is called wavelength. Wavelength is expressed as;
[tex]\lambda = \frac{v}{f}[/tex]
Where [tex]\lambda[/tex] is wavelength, f is the frequency of the wave and c is the velocity or speed of light ( [tex]c = 3*10^8m/s[/tex] )
We substitute our values into the expression above.
[tex]\lambda = \frac{c}{ f}\\ \\\lambda = \frac{3*10^8m/s}{9.45*10^7s^{-1}} \\\\\lambda = \frac{3*10^8ms/s}{9.45*10^7}\\\\\lambda = 3.17m[/tex]
Therefore, the wavelength of the radio signal travel at speed of light is 3.17m.
Learn more about wavelength: brainly.com/question/16776907