Answer:
33.75 cubic inches of styrofoam can be placed inside the container.
Step-by-step explanation:
Based on given information, the volume of the prism ([tex]V[/tex]), in cubic inches, is determined by using this formula:
[tex]V = \frac{1}{2}\cdot b\cdot h \cdot l[/tex] (1)
Where:
[tex]b[/tex] - Base of the triangular face, in inches.
[tex]h[/tex] - Height of the triangular face, in inches.
[tex]l[/tex] - Length of the prism, in inches.
If we know that [tex]b = 3\,in[/tex], [tex]h = 2.5\,in[/tex] and [tex]l = 9\,in[/tex], then the volume of the prism is:
[tex]V = \frac{1}{2}\cdot b\cdot h \cdot l[/tex]
[tex]V = 33.75\,in^{3}[/tex]
33.75 cubic inches of styrofoam can be placed inside the container.