Let {an} be a sequence that satisfies the recurrence relation an = an-1 + 3 for n = 1, 2, 3, ... , and suppose that a0 = 2. What are a1, a2, and a3? Show your solution.

Respuesta :

Given:

[tex]a_n=a_{n-1}+3[/tex]

[tex]a_0=2[/tex]

To find:

The values [tex]a_1,a_2,a_3[/tex].

Solution:

We have,

[tex]a_n=a_{n-1}+3[/tex]

For [tex]n=1[/tex],

[tex]a_1=a_{1-1}+3[/tex]

[tex]a_1=a_{0}+3[/tex]

[tex]a_1=2+3[/tex]

[tex]a_1=5[/tex]

For [tex]n=2[/tex],

[tex]a_2=a_{2-1}+3[/tex]

[tex]a_2=a_{1}+3[/tex]

[tex]a_2=5+3[/tex]

[tex]a_2=8[/tex]

For [tex]n=3[/tex],

[tex]a_3=a_{3-1}+3[/tex]

[tex]a_3=a_{2}+3[/tex]

[tex]a_3=8+3[/tex]

[tex]a_3=11[/tex]

Therefore, [tex]a_1=5,a_2=8,a_3=11[/tex].

The value of [tex]\rm a_1=5[/tex], [tex]\rm a_2=8[/tex], and [tex]\rm a_3=11[/tex] and this can be determined by using the arithmetic operations and the given data.

Given :

Let {an} be a sequence that satisfies the recurrence relation [tex]\rm a_n=a_{n-1}+3[/tex] for n = 1, 2, 3,... and suppose that [tex]\rm a_0=2[/tex].

According to the given data, the recurrence relation is given below:

[tex]\rm a_n=a_{n-1}+3[/tex]   --- (1)

Now, substitute the value of (n = 1) in the above expression.

[tex]\rm a_1=a_{1-1}+3[/tex]

[tex]\rm a_1=a_{0}+3[/tex]           (put [tex]\rm a_0=2[/tex])

[tex]\rm a_1=2+3[/tex]

[tex]\rm a_1=5[/tex]

Now, substitute the value of (n = 2) in the expression (1).

[tex]\rm a_2=a_{2-1}+3[/tex]

[tex]\rm a_2=a_{1}+3[/tex]           (put [tex]\rm a_1=5[/tex])

[tex]\rm a_2=5+3[/tex]

[tex]\rm a_2=8[/tex]

Now, substitute the value of (n = 3) in the expression (1).

[tex]\rm a_3=a_{3-1}+3[/tex]

[tex]\rm a_3=a_{2}+3[/tex]           (put [tex]\rm a_2=8[/tex])

[tex]\rm a_3=8+3[/tex]

[tex]\rm a_3=11[/tex]

For more information, refer to the link given below:

https://brainly.com/question/10168678