Respuesta :

Answer:

The first derivative of [tex]y = \sinh^{-1} (x^{2}+1)[/tex] is [tex]y' = \frac{2\cdot x}{\sqrt{x^{2}+2\cdot x +2}}[/tex].

Step-by-step explanation:

We proceed to find the first derivative of [tex]y = \sinh^{-1} (x^{2}+1)[/tex] by explicit differentiation and rule of chain:

[tex]y = \sinh^{-1} (x^{2}+1)[/tex]

[tex]y' = \frac{2\cdot x}{\sqrt{(x^{2}+1)^{2}+1}}[/tex]

[tex]y' = \frac{2\cdot x}{\sqrt{x^{2}+2\cdot x +2}}[/tex]

The first derivative of [tex]y = \sinh^{-1} (x^{2}+1)[/tex] is [tex]y' = \frac{2\cdot x}{\sqrt{x^{2}+2\cdot x +2}}[/tex].