Respuesta :

Answer:

(a) and (b) are not equivalent

(c) is equivalent

Step-by-step explanation:

Given

[tex]\frac{25^m}{5}[/tex]

See attachment for complete question

Required

Determine an equivalent or nonequivalent expression

[tex](a)\ 25^{m-1[/tex]

We have:

[tex]25^{m-1[/tex]

Apply law of indices

[tex]25^{m-1} = \frac{25^m}{25}[/tex]

This is not equivalent to [tex]\frac{25^m}{5}[/tex]

[tex](b)\ 25^{2m - 1}[/tex]

We have:

[tex]25^{2m - 1}[/tex]

Apply law of indices

[tex]25^{2m - 1} = \frac{25^{2m}}{25}[/tex]

This is not equivalent to [tex]\frac{25^m}{5}[/tex]

[tex](c)\ 5^{2m-1}[/tex]

We have:

[tex]5^{2m-1}[/tex]

Apply law of indices

[tex]5^{2m-1} = \frac{5^{2m}}{5^1}[/tex]

[tex]5^{2m-1} = \frac{5^{2m}}{5}[/tex]

Evaluate the numerator

[tex]5^{2m-1} = \frac{25m}{5}[/tex]

This is an equivalent expression

Ver imagen MrRoyal