Answer: [tex]6351.25\ ft[/tex]
Step-by-step explanation:
Given
Angle of elevation [tex]x=12^{\circ}[/tex]
Height of tower [tex]h=1350\ ft[/tex]
Suppose tourist is d feet away from the tower
from the figure, we can write
[tex]\Rightarrow \tan 12^{\circ}=\dfrac{1350}{d}\\\\\Rightarrow d=\dfrac{1350}{\tan 12^{\circ}}=6351.25\ ft[/tex]
Thus, the distance of tourist from the tower is [tex]6350.25\ ft[/tex]