Answer:
(a) Expanded form:
[tex]((X_1 + X_1Y_1) - X_1Z_1) + ((X_2 + X_2Y_2) - X_2Z_2) + ((X_3 + X_3Y_3) - X_3Z_3) + ((X_4 + X_4Y_4) - X_4Z_4)[/tex]
(b) The value of the expression: -21
Step-by-step explanation:
Given
[tex]\sum \limit^4_{i=1}\ ((X_i+X_iY_i) - X_iZ_i)[/tex]
Solving (a): The expanded form:
This means that we substitute the values of i from 1 to 4 in the above expression.
So, the expression becomes:
[tex]((X_1 + X_1Y_1) - X_1Z_1) + ((X_2 + X_2Y_2) - X_2Z_2) + ((X_3 + X_3Y_3) - X_3Z_3) + ((X_4 + X_4Y_4) - X_4Z_4)[/tex]
Solving (b): The value of the expression
To do this, we simply substitute the given values of X1, X2....... in the expression.
This gives:
So, the expression becomes:
[tex]((0 + 0*5) - 0*0) + ((1 + 1*26) - 1*-2) + ((12 + 12*-2) - 12*3) + ((-1 + -1*25) - -1*24)[/tex]
Simplify each bracket
[tex]((0 + 0) - 0) + ((1 + 26) +2) + ((12 -24) - 36) + ((-1 -25) +24)[/tex]
[tex]0 + 29 -48 -2[/tex]
[tex]-21[/tex]
Hence, the result of the expression is -21