Answer:
(a) 6.36 mg/L
(b) 5.60 mg/L
Explanation:
(a)
Using the formula below to find the required ultimate BOD of the mixture.
[tex]L_o = \dfrac{Q_wL_w+ Q_rL_r}{Q_W+Q_r}[/tex]
where;
Q_w = volumetric flow rate wastewater
Q_r = volumetric flow rate of the river just upstream of the discharge point
L_w = ultimate BOD of wastewater
Replacing the given values:
[tex]L_o = \dfrac{(1 \ m^3/L ) (40 \ mg/L) + (10 \ m^3/L) (3 \mg/L)}{(1m^3/L) +(10 \ m^3/L)} \\ \\ L_o = 6.36 \ mg/L[/tex]
(b)
The Ultimate BOD is estimated as follows:
Recall that:
[tex]time(t) = \dfrac{distance }{speed}[/tex]
replacing;
distance with 10000 m and speed with [tex]\dfrac{11 \ m^3/s}{55 \ m^2}[/tex]
[tex]time =\dfrac{10000 \ m}{\Bigg(\dfrac{11 \ m^3/s}{55 \ m^2}\Bigg)}\Bigg(\dfrac{1 \ hr}{3600 \ s}\Bigg) \Bigg(\dfrac{1 \ day}{24 hr}\Bigg)[/tex]
time (t) = 0.578 days
Finally; [tex]L_t = L_oe^{-kt}[/tex]
here;
k = rate of coefficient reaction
[tex]L_ t= (6.36) \times e^{-(0.22/day)(0.5758 \ days)}\\ \\ \mathbf{L_t =5.60 \ mg/L}[/tex]
Thus, the ultimate BOD = 5.60 mg/L