A 2.3 kg , 20-cm-diameter turntable rotates at 110 rpm on frictionless bearings. Two 460 g blocks fall from above, hit the turntable simultaneously at opposite ends of a diameter, and stick. Part A What is the turntable's angular velocity, in rpm, just after this event

Respuesta :

Answer:

The correct solution is "64 RPM".

Explanation:

The given values are:

Mass,

M = 2.3 kg

Diameter,

D = 20 cm

i.e.,

   = 0.2 m

Rotates at,

N = 110 rpm

Mass of block,

m = 460 g

i.e.,

   = 0.46 kg

According to angular momentum's conservation,

⇒  [tex]I_1\omega_1=I_2\omega_2[/tex]

then,

⇒  [tex]I_1=\frac{1}{2}MR_2[/tex]

On substituting the values, we get

⇒      [tex]=\frac{1}{2}\times 2.3\times (0.1)^2[/tex]

⇒      [tex]=\frac{1}{2}\times 0.023[/tex]

⇒      [tex]=0.0115 \ kg \ m^2[/tex]

Now,

⇒  [tex]I_2=I_1+2mR^2[/tex]

        [tex]=0.0115+2\times 0.46\times (0.1)^2[/tex]

        [tex]=0.0115+0.0092[/tex]

        [tex]=0.02 \ kg \ m^2[/tex]

then,

⇒  [tex]0.0115\times 110=0.02\omega_2[/tex]

⇒              [tex]1.265=0.02\omega_2[/tex]

⇒                  [tex]\omega_2=\frac{1.265}{0.02}[/tex]

⇒                       [tex]=63.25 \ or \ 64 \ RPM[/tex]