Respuesta :
Answer:
[tex](a)\ c = \frac{1}{15}[/tex]
[tex](b)\ 40\%[/tex]
[tex](c)\ 60\%[/tex]
Step-by-step explanation:
The given parameters can be represented as:
[tex]P_Y(y) \ge 0, y =1,2,3,4,5[/tex]
[tex]P_y(y) = cy, y=1,2,3,4,5[/tex]
Solving (a): The value of c
To do this, we make use of the following rule;
[tex]\sum\limit^5_{y=1}P_Y(y_i) = 1[/tex]
Given that:
[tex]P_y(y) = cy, y=1,2,3,4,5[/tex]
This is translated to:
[tex]c*1 + c * 2 + c * 3 + c * 4 + c * 5 = 1[/tex]
[tex]c + 2c + 3c + 4c + 5c = 1[/tex]
[tex]15c = 1[/tex]
Solve for c
[tex]c = \frac{1}{15}[/tex]
(b) The proportions of applications that requires at most 3 forms
This implies that: y = 1,2,3
So, we make use of:
[tex]P(Y \le 3) = P(Y=1) + P(y=2) + P(Y=3)[/tex]
Recall that:
[tex]P_y(y) = cy, y=1,2,3,4,5[/tex]
Substitute [tex]c = \frac{1}{15}[/tex]
[tex]P_y(y) =\frac{1}{15}y[/tex]
So:
[tex]P(Y \le 3) = P(Y=1) + P(y=2) + P(Y=3)[/tex]
[tex]P(Y\le 3) = \frac{1}{15} * 1 +\frac{1}{15} * 2 +\frac{1}{15} * 3[/tex]
[tex]P(Y\le 3) = \frac{1}{15} +\frac{2}{15} +\frac{3}{15}[/tex]
Take LCM
[tex]P(Y\le 3) = \frac{1+2+3}{15}[/tex]
[tex]P(Y\le 3) = \frac{6}{15}[/tex]
[tex]P(Y\le 3) = 0.4[/tex]
Express as percentage
[tex]P(Y\le 3) = 0.4*100\%[/tex]
[tex]P(Y\le 3) = 40\%[/tex]
(c) The proportions of applications that requires between 2 and 4 forms (inclusive)
This implies that: y = 2,3,4
So, we make use of:
[tex]P(2 \le Y \le 4) = P(Y=2) + P(Y=3) + P(Y=4)[/tex]
[tex]P(2 \le Y \le 4) = 2 * \frac{1}{15} + 3 * \frac{1}{15} + 4 * \frac{1}{15}[/tex]
[tex]P(2 \le Y \le 4) = \frac{2}{15} + \frac{3}{15} + \frac{4}{15}[/tex]
Take LCM
[tex]P(2 \le Y \le 4) = \frac{2+3+4}{15}[/tex]
[tex]P(2 \le Y \le 4) = \frac{9}{15}[/tex]
[tex]P(2 \le Y \le 4) = 0.6[/tex]
Express as percentage
[tex]P(2 \le Y \le 4) = 0.6 * 100\%[/tex]
[tex]P(2 \le Y \le 4) = 60\%[/tex]