Answer:
A
Step-by-step explanation:
Given
P(t) = 60 [tex](3)^{\frac{t}{2} }[/tex]
Then
P(1) = 60 × [tex]3^{\frac{1}{2} }[/tex] = 60[tex]\sqrt{3}[/tex]
P(2) = 60 × 3 = 180
P(3) = 60 × [tex]3^{\frac{3}{2} }[/tex] = 60 ×[tex]\sqrt{3^{3} }[/tex] = 60 × 3[tex]\sqrt{3}[/tex] = 180[tex]\sqrt{3}[/tex]
P(4) = 60 × 3² = 60 × 9 = 540
P(5) = 60 × [tex]3^{\frac{5}{2} }[/tex] = 60 × [tex]\sqrt{3^{5} }[/tex] = 60 × 9[tex]\sqrt{3}[/tex] = 540[tex]\sqrt{3}[/tex]
P(6) = 60 × 3³ = 60 × 27 = 1620
From these 6 results we see that
P(3) = 3 × P(1)
P(4) = 3 × P(2)
P(5) = 3 × P(3)
P(6) = 3 × P(4)
The predicted number of organisms triples every 2 days → A