Consider a simple pendulum that consists of a massless 2.00-meter length of rope attached to a 5.00-kg mass at one end. What happens to the frequency of oscillation of the pendulum if we double the length of the rope

Respuesta :

Answer:

If we double the length we will have:

[tex]f'=\frac{f}{\sqrt{2}}[/tex]

Explanation:

The equation of the angular frequency of a pendulum is given by:

[tex]\omega=\sqrt{\frac{g}{L}}[/tex]

Where:

  • g is the gravity
  • L is the length of the pendulum

By definition the period is:

[tex]T=\frac{2\pi}{\omega}[/tex]

And frequency is 1 over the frequency T:

[tex]f=\frac{1}{T}[/tex]

[tex]f=\frac{1}{2\pi}\sqrt{\frac{g}{L}}[/tex]

Now, if we double the length we will have:

[tex]f'=\frac{1}{2\pi}\sqrt{\frac{g}{2L}}[/tex]

[tex]f'=\frac{1}{2\pi\sqrt{2}}\sqrt{\frac{g}{L}}[/tex]

[tex]f'=\frac{f}{\sqrt{2}}[/tex]

Therefore, the new frequency is the old frequency over √2.

I hope it helps you!