Respuesta :

Answer:

[tex]\displaystyle x=\left\{\frac{\pi}{2}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\right\}[/tex]

Step-by-step explanation:

We are given the equation:

[tex](\sin(x)-\cos(x))^2=1+\cos(x)[/tex]

And we want to find all solutions for the equation within the interval [0, 2π).

First, we can expand. This yields:

[tex]\sin^2(x)-2\sin(x)\cos(x)+\cos^2(x)=1+\cos(x)[/tex]

From the Pythagorean Identity, we know that:

[tex]\sin^2(x)+\cos^2(x)=1[/tex]

Therefore:

[tex]-2\sin(x)\cos(x)+1=1+\cos(x)[/tex]

Simplify:

[tex]-2\sin(x)\cos(x)=\cos(x)[/tex]

Subtract cos(x) from both sides*:

[tex]-2\sin(x)\cos(x)-\cos(x)=0[/tex]

Factor:

[tex]\cos(x)\left(-2\sin(x)-1)=0[/tex]

Zero Product Property:

[tex]\cos(x)=0\text{ or } -2\sin(x)-1=0[/tex]

Solve for each case:

[tex]\displaystyle \cos(x)=0\text{ or } \sin(x)=-\frac{1}{2}[/tex]

Use the unit circle. So, our solutions are:

[tex]\displaystyle x=\left\{\frac{\pi}{2}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\right\}[/tex]

*Note that we should not simply divide both sides by cos(x) to acquire -2sin(x) = 1. This is because we do not know what the value of x is, and so one or may values of x may result in cos(x) = 0, and we cannot divide by 0. Hence, we need to subtract and factor and utilize the Zero Product Property.