Answer:
Step-by-step explanation:
Given that:
t 0 1 2 3 4 5 6 7
A'(t) 0.91 0.83 0.76 0.69 0.62 0.58 0.48 0.44
a) [tex]\Delta x = \dfrac{5-0}{5}[/tex]
[tex]\Delta x = 1[/tex]
[tex]L_ 5= \Delta x ( (A'(0)+A'(1)+A'(2)+A'(3)+A'(4)) \\ \\ = 1 (0.91 + 0.83+ 0.76 +0.69 + 0.62 ) \\\\ L_5 =1( 3.81) \\ \\ \mathbf{L_5 = 3.81}[/tex]
[tex]R_ 5= \Delta x ( (A'(1)+A'(2)+A'(3)+A'(4)+A'(5)) \\ \\ = 1 ( 0.83+ 0.76 +0.69 + 0.62 +0.58) \\\\ R_5 =1( 3.48) \\ \\ \mathbf{R_5 = 3.48}[/tex]
The true statement:
[tex]Since, R_5 = 3.48 \ and \ L_5 = 3.81; \\ \\ Then : R_5 \le \int \limits ^5_0 A'(t) dt \le L_5[/tex]