Respuesta :

Answer:

B

Step-by-step explanation:

since y=1/5x-3. Substitute that into the top equation

[tex] \frac{1}{5} x - 3 = {x}^{2} - 10x + 23[/tex]

[tex] - 3 = {x}^{2} - \frac{51}{5} x + 23[/tex]

[tex] {x}^{2} - \frac{51}{5} x + 26[/tex]

Use the discramnt formula

[tex]b {}^{2} - 4ac[/tex]

[tex]( - \frac{51}{5} ) {}^{2} - 4(1)(26)[/tex]

[tex] \frac{2601}{25} - 104[/tex]

[tex] = \frac{1}{25} [/tex]

Since 1/25 is bigger than zero, there will be 2 solutions.