Respuesta :

Answer:

Step-by-step explanation:

[tex]\frac{1}{4}+\frac{9}{10}y - \frac{3}{5}y+\frac{7}{8}\\\\=\frac{1}{4}+\frac{7}{8}+\frac{9}{10}y-\frac{3}{5}y\\\\[/tex]

Combine like terms. 1/4 and 7/8 are like terms and LCD of 4 and 8 is 8

9/10y and -3/5y are like terms and LCD of 10 , 5 is 10

[tex]= \frac{1*2}{4*2}+\frac{7}{8}+\frac{9}{10}y-\frac{3*2}{5*2}y\\\\=\frac{2}{8}+\frac{7}{8}+\frac{9}{10}y-\frac{6}{10}y\\\\=\frac{9}{8}+\frac{3}{10}y[/tex]

Answer:

3 • (4y + 15)

-----------------  

      40  

Step-by-step explanation:

Long explanation get ready

STEP

1

:

           7

Simplify   —

           8

Equation at the end of step

1

:

   1   9      3     7

 ((—+(——•y))-(—•y))+—

   4  10      5     8

STEP

2

:

           3

Simplify   —

           5

Equation at the end of step

2

:

   1   9      3     7

 ((—+(——•y))-(—•y))+—

   4  10      5     8

STEP

3

:

            9

Simplify   ——

           10

Equation at the end of step

3

:

   1      9          3y     7

 ((— +  (—— • y)) -  ——) +  —

   4     10          5      8

STEP

4

:

           1

Simplify   —

           4

Equation at the end of step

4

:

   1    9y     3y     7

 ((— +  ——) -  ——) +  —

   4    10     5      8

STEP

5

:

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple

     The left denominator is :       4

     The right denominator is :       10

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 1 2

5 0 1 1

Product of all

Prime Factors  4 10 20

     Least Common Multiple:

     20

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 5

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.       5

  ——————————————————  =   ——

        L.C.M             20

  R. Mult. • R. Num.      9y • 2

  ——————————————————  =   ——————

        L.C.M               20  

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

5 + 9y • 2     18y + 5

——————————  =  ———————

    20           20  

Equation at the end of step

5

:

  (18y + 5)    3y     7

 (————————— -  ——) +  —

     20        5      8

STEP

6

:

Calculating the Least Common Multiple :

6.1    Find the Least Common Multiple

     The left denominator is :       20

     The right denominator is :       5

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 0 2

5 1 1 1

Product of all

Prime Factors  20 5 20

     Least Common Multiple:

     20

Calculating Multipliers :

6.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 4

Making Equivalent Fractions :

6.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (18y+5)

  ——————————————————  =   ———————

        L.C.M               20  

  R. Mult. • R. Num.      3y • 4

  ——————————————————  =   ——————

        L.C.M               20  

Adding fractions that have a common denominator :

6.4       Adding up the two equivalent fractions

(18y+5) - (3y • 4)     6y + 5

——————————————————  =  ——————

        20               20  

Equation at the end of step

6

:

 (6y + 5)    7

 ———————— +  —

    20       8

STEP

7

:

Calculating the Least Common Multiple :

7.1    Find the Least Common Multiple

     The left denominator is :       20

     The right denominator is :       8

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 3 3

5 1 0 1

Product of all

Prime Factors  20 8 40

     Least Common Multiple:

     40

Calculating Multipliers :

7.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 2

  Right_M = L.C.M / R_Deno = 5

Making Equivalent Fractions :

7.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (6y+5) • 2

  ——————————————————  =   ——————————

        L.C.M                 40    

  R. Mult. • R. Num.      7 • 5

  ——————————————————  =   —————

        L.C.M              40  

Adding fractions that have a common denominator :

7.4       Adding up the two equivalent fractions

(6y+5) • 2 + 7 • 5     12y + 45

——————————————————  =  ————————

        40                40  

STEP

8

:

Pulling out like terms :

8.1     Pull out like factors :

  12y + 45  =   3 • (4y + 15)