Find the perimeter of the polygon with vertices of the triangle A(-2, 4), B (3, 4), and C (3, -4) answer quickly​. a b and c aren't answer choices​

Respuesta :

Step-by-step explanation:

Three coordinates of triange are given to us and we need to find its perimeter . We know that perimeter is the sum of all sides . Lets find the distance between each sides using distance formula .

Distance between A and B :-

[tex]\tt\to D_{(AB)} =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\\\\tt\to D_{(AB)} =\sqrt{(3-2)^2+(4-4)^2}\\\\\tt\to D_{(AB)} =\sqrt{( 1^2+0^2 )} \\\\\tt\to D_{(AB)} =\sqrt{1} \\\\\tt\to \boxed{\orange{\tt D_{(AB)} = 1\ units }}[/tex]

_________________________________

• Distance between A and C :-

[tex]\tt\to D_{(AC)} =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\\\\tt\to D_{(AC)} =\sqrt{(3-2)^2+(4+4)^2}\\\\\tt\to D_{(AC)} =\sqrt{( 1^2+8^2 )} \\\\\tt\to D_{(AC)} =\sqrt{65} \\\\\tt\to \boxed{\orange{\tt D_{(AC)} = \sqrt{65}\ units }}[/tex]

_________________________________

• Distance between C and B :-

[tex]\tt\to D_{(CB)} =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\\\\tt\to D_{(CB)} =\sqrt{(3-3)^2+(4+4)^2}\\\\\tt\to D_{(CB)} =\sqrt{( 8^2+0^2 )} \\\\\tt\to D_{(CB)} =\sqrt{65} \\\\\tt\to \boxed{\orange{\tt D_{(CB)} = \sqrt{65}\ units }}[/tex]

Hence the total perimeter will be ,

[tex]\to\tt D_{(AB)}+D_{(BC)}+D_{(CA)}\\\\\tt\to \sqrt{65}+\sqrt{65}+1 \\\\\tt\large\to\underline{\boxed{\green{\tt 1 +2\sqrt{65} \:\:units }}}[/tex]