Respuesta :

Answer:

The completed proof is presented as follows;

The two column proof is presented as follows;

Statements    [tex]{}[/tex]                                               Reason

1. [tex]\overline {HI}[/tex] ║ [tex]\overline {KL}[/tex], J is the midpoint of [tex]\overline {HL}[/tex] [tex]{}[/tex]         1. Given

2. ∠IHJ ≅ ∠JLK[tex]{}[/tex]                                            2. Alternate angles are congruent

3. ∠IJH ≅ ∠KJL   [tex]{}[/tex]                                         3. Vertically opposite angles

4.  [tex]\overline {HJ}[/tex] ≅ [tex]\overline {JL}[/tex]   [tex]{}[/tex]                                              4. Definition of midpoint

5. ΔHIJ ≅ ΔLKJ  [tex]{}[/tex]                                         5. By ASA rule of congruency

Step-by-step explanation:

Alternate angles formed by the crossing of the two parallel lines [tex]\overline {HI}[/tex] and [tex]\overline {KL}[/tex], by the transversal [tex]\overline {HL}[/tex] are equal

Vertically opposite angles formed by the crossing of two straight lines [tex]\overline {IK}[/tex] and [tex]\overline {HL}[/tex] are always equal

A midpoint divides a line into two equal halves

Angle-Side-Angle, ASA rule of congruency states that two triangles ΔHIJ and ΔLKJ, that have two congruent angles, ∠IHJ in ΔHIJ ≅ ∠JLK[tex]{}[/tex] in ΔLKJ and ∠IJH in ΔHIJ ≅ ∠KJL in ΔLKJ, and that the included sides between the two congruent angles is also congruent [tex]\overline {HJ}[/tex] ≅ [tex]\overline {JL}[/tex], then the two triangles are congruent, ΔHIJ ≅ ΔLKJ.