Respuesta :

Answer:

First, if we have a function defined as:

[tex]G(x) = \int\limits^x_0 {f(t)} \, dt[/tex]

then:

G'(x) = f(x)

[tex]F(x) = \int\limits^x_0 {cos(t)^2} \, dt[/tex]

then:

F' = dF/dt = cos(t)^2

F'(1) = cos(1)^2 = 0.2919

If we round it up to the third digit after the decimal point we get:

F'(1) = 0.292

The correct option is the second one.