Answer:
First, if we have a function defined as:
[tex]G(x) = \int\limits^x_0 {f(t)} \, dt[/tex]
then:
G'(x) = f(x)
[tex]F(x) = \int\limits^x_0 {cos(t)^2} \, dt[/tex]
then:
F' = dF/dt = cos(t)^2
F'(1) = cos(1)^2 = 0.2919
If we round it up to the third digit after the decimal point we get:
F'(1) = 0.292
The correct option is the second one.