An ideal gas is contained in a closed assembly with an initial pressure and
temperature of 250 kN/m²and 75°C respectively, If the final volume of the system
is increased 1.8 times and the temperature drops to 18°C, determine the final
pressure of the gas.​

Respuesta :

Answer: The final pressure is 116kPa or [tex]116kN/m^2[/tex]

Explanation:

The combined gas equation is,

[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]

where,

[tex]P_1[/tex] = initial pressure of gas = [tex]250kN/m^2=250kPa[/tex]   [tex](1kN/m^2=1kPa)[/tex]

[tex]P_2[/tex] = final pressure of gas = ?

[tex]V_1[/tex] = initial volume of gas = v ml

[tex]V_2[/tex] = final volume of gas = [tex]1.8\times v=1.8vml[/tex]

[tex]T_1[/tex] = initial temperature of gas = [tex]75^0C=(75+273)K=348K[/tex]

[tex]T_2[/tex] = final temperature of gas = [tex]18^0C=(18+273)K=291K[/tex]

Now put all the given values in the above equation, we get:

[tex]\frac{250kPa\times v}{348}=\frac{P_2\times 1.8v}{291}[/tex]

[tex]P_2=116kPa[/tex]

The final pressure is 116kPa or [tex]116kN/m^2[/tex]