Directions: Find the value of x.
Round angle measures to the nearest degree.

Given:
The figure of a right triangle.
To find:
The value of x.
Solution:
In a right angle triangle,
[tex]\sin \theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]
In the given right triangle,
Hypotenuse = 15
Perpendicular = 12.5
Now,
[tex]\sin x^\circ=\dfrac{12.5}{15}[/tex]
[tex]\sin x^\circ=0.83333[/tex]
[tex]x^\circ=\sin^{-1}0.83333[/tex]
[tex]x^\circ =56.442345^\circ[/tex]
[tex]x\approx 56[/tex]
Therefore, the equation used to find x is [tex]\sin x^\circ=\dfrac{12.5}{15}[/tex] and the value of x is 56.