Respuesta :

Answer:

The sides of the equilateral triangle are 11.7 m.

Step-by-step explanation:

Let's find the area of the isosceles triangle:

[tex] A_{i} = \frac{bh}{2} [/tex]

Where:

b: is the base = 12 m

h: is the height

We can find the height by using Pitagoras:

[tex] x^{2} = \frac{b^{2}}{2} + h^{2} [/tex]    

Where:

x is the hypotenuse = side of the triangle = 10 m

[tex] h = \sqrt{x^{2} - \frac{b^{2}}{2}} = \sqrt{(10)^{2} - 6^{2}} = 8 m [/tex]

Then, the area is:

[tex] A_{i} = \frac{12*8}{2} = 48 m^{2} [/tex]

Now, since the area of the isosceles triangle is equal to the area of the equilateral triangle:

[tex] A_{e} = A_{i} = 48 m^{2} [/tex]

[tex] A_{e} = \frac{bh}{2} [/tex]

The height of the equilateral triangle is given by:

[tex] b^{2} = \frac{b^{2}}{2} + h^{2} [/tex]    

[tex] h = \sqrt{b^{2} - \frac{b^{2}}{2}} = \frac{b}{\sqrt{2}} [/tex]

Hence, the sides are:

[tex] A_{e} = \frac{1}{2}b\frac{b}{\sqrt{2}} = \frac{b^{2}}{2\sqrt{2}} [/tex]            

[tex] b = \sqrt{A*2\sqrt{2}} = \sqrt{48*2\sqrt{2}} = 11.7 m [/tex]      

Therefore, the sides of the equilateral triangle are 11.7 m.

I hope it helps you!      

Answer:

The sides must be  around     10.53 m

Step-by-step explanation:

You can calculate the area of isosceles  dividing into 2 equal right triangles

Once you know that the area of the isosceles is 48 m²,solve for the side of the equilateral triangle

Formula for the Area:    (A= area    a = side)

     

A = (√3* a² ) / 4

48= (√3* a² ) / 4

Multiply both sides by 4

192 =√3* a²

Divide both sides by√3               (   √3 = 1.732050....)

110.851303 =   a²

Square root on both sides

10 .5385...( 10.53 )  = a