Respuesta :

Answer:

[tex]a^3 + b^3 = -4[/tex]

Step-by-step explanation:

Given

[tex]a + b = 3ab = 2[/tex]

Required

Solve: [tex]a^3 + b^3[/tex]

Rewrite the expression as:

[tex]a^3 + b^3 = a^3 - a^2b +ab^2 + a^2b - ab^2 + b^3[/tex]

Factorize

[tex]a^3 + b^3 = a(a^2 - ab +b^2) + b(a^2 - ab + b^2)[/tex]

[tex]a^3 + b^3 = (a + b)(a^2 - ab + b^2)[/tex]

Rewrite as:

[tex]a^3 + b^3 = (a + b)(a^2 + b^2- ab)[/tex]

[tex]a^3 + b^3 = (a + b)(a^2 + b^2+2ab - 3ab)[/tex]

Factorize

[tex]a^3 + b^3 = (a + b)((a + b)^2 - 3ab)[/tex]

Open brackets

[tex]a^3 + b^3 = (a + b)^3 - 3ab(a + b)[/tex]

Given that:

[tex]a + b = 3ab = 2[/tex]

This means that:

[tex]a + b = 2[/tex] and [tex]3ab = 2[/tex]

So, we have:

[tex]a^3 + b^3 = (a + b)^3 - 3ab(a + b)[/tex]

[tex]a^3 + b^3 = 2^3 - 3 * 2 * 2[/tex]

[tex]a^3 + b^3 = 8 - 12[/tex]

[tex]a^3 + b^3 = -4[/tex]