Respuesta :

Given:

The diagram of two right triangles.

To find:

The value of d and a.

Solution:

In a right angle triangle,

[tex]\tan \theta=\dfrac{Perpendicular}{Base}[/tex]

[tex]\sin \theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]

(a) In first triangle,

[tex]\tan 60^\circ=\dfrac{d}{4}[/tex]

[tex]\sqrt{3}=\dfrac{d}{4}[/tex]

[tex]4\sqrt{3}=d[/tex]

Therefore, [tex]d=4\sqrt{3}[/tex].

(b) In second triangle,

[tex]\sin 45^\circ=\dfrac{a}{2}[/tex]

[tex]\dfrac{1}{\sqrt{2}}=\dfrac{a}{2}[/tex]

[tex]\dfrac{2}{\sqrt{2}}=a[/tex]

[tex]\sqrt{2}=a[/tex]

Therefore, [tex]a=\sqrt{2}[/tex].