Respuesta :

Space

Answer:

[tex]\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}[/tex]

[tex]\displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}[/tex]

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Exponential Rule [Multiplying]:                                                                      [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]

Calculus

Derivatives

Derivative Notation

eˣ Derivative:                                                                                                           [tex]\displaystyle \frac{d}{dx}[e^x] = e^x[/tex]

Derivative Rule [Product Rule]:                                                                                  [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle \frac{d}{dx}[e^{2x}] = \frac{d}{dx}[e^x \cdot e^x][/tex]

[tex]\displaystyle \frac{d}{dx}[e^{3x}] = \frac{d}{dx}[e^x \cdot e^{2x}][/tex]

Step 2: Differentiate

[tex]\displaystyle \frac{d}{dx}[e^{2x}][/tex]

  1. [Derivative] Product Rule:                                                                              [tex]\displaystyle \frac{d}{dx}[e^{2x}] = \frac{d}{dx}[e^x]e^x + e^x\frac{d}{dx}[e^x][/tex]
  2. [Derivative] eˣ Derivative:                                                                               [tex]\displaystyle \frac{d}{dx}[e^{2x}] = e^x \cdot e^x + e^x \cdot e^x[/tex]
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:                                  [tex]\displaystyle \frac{d}{dx}[e^{2x}] = e^{2x} + e^{2x}[/tex]
  4. [Derivative] Combine like terms [Addition]:                                                  [tex]\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}[/tex]

[tex]\displaystyle \frac{d}{dx}[e^{3x}][/tex]

  1. [Derivative] Product Rule:                                                                              [tex]\displaystyle \frac{d}{dx}[e^{3x}] = \frac{d}{dx}[e^x]e^{2x} + e^x\frac{d}{dx}[e^{2x}][/tex]
  2. [Derivative] eˣ Derivatives:                                                                             [tex]\displaystyle \frac{d}{dx}[e^{3x}] = e^x(e^{2x}) + e^x(2e^{2x})[/tex]
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:                                  [tex]\displaystyle \frac{d}{dx}[e^{3x}] = e^{3x} + 2e^{3x}[/tex]
  4. [Derivative] Combine like terms [Addition]:                                                  [tex]\displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}[/tex]

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e