Answer:
a) The temperature on the outer surface of the pipe is approximately 179.97 °C
b) The thickness of the insulation is approximately 0.857 m
Explanation:
We have;
[tex]\dfrac{1}{U} = \dfrac{1}{\alpha _A}[/tex]
αA = 200 W/(m²·K)
[tex]\dot q[/tex] = (T₂ - T₁) × U
[tex]\dot q[/tex] = (200 - 180) × 200 = 4,000
For the pipe, we have;
[tex]\dfrac{1}{U} =\dfrac{x}{kc }[/tex]
[tex]\dot q[/tex]/U= (T₂ - T₁)
∴ 4000×[tex]\dfrac{0.001}{150}[/tex] = (180 - T₂)
T₂ ≈ 179.97 °C
The temperature on the outer surface of the pipe, T₂ ≈ 179.97 °C
b) For the insulation, we have;
[tex]\dfrac{1}{U} = \dfrac{x}{ki } = \dfrac{x}{0.03}[/tex]
T₂ - T₃ = 179.97 °C - 40°C ≈ 139.97°C
[tex]\dot q[/tex]/U= (T₂ - T₃)
[tex]x = \dfrac{\dot q \cdot kc}{T_2 - T_3} = \dfrac{4,000 \times 0.03}{139.97} \approx 0.857[/tex]
The thickness of the insulation, x ≈ 0.857 m