Respuesta :
Answer:
Step-by-step explanation:
From the given question; we can use the R software to program the combination function that generates all the combinations.
options(digits =2(
scores<- c(68,77,82,85,53,64,71)
groupA <- combn(scores,4)
groupB <- apply(groupA,2, function(x) scores[! (scores %in% x) ] )
colnames(groupA) <- colnames(groupB) <- paste("G", 1:35, sep"")
The accompanying 35 groupings (G1 to G35) contain all potential ways these understudies can be randomized under the null hypothesis
Group A
[tex]\text{G1 \ G2 \ G3 \ G4 \ G5 \ G6 \ G7 \ G8 \ G9 \ G10\ G11\ G12 \ G13 \ G14}[/tex]
[tex]\text{68 \ \ 68 \ \ 68 \ \ 68 \ \ 68 \ \ 68 \ \ 68 \ \ 68 \ \ 68 \ \ 68 \ \ 68 \ \ 68 \ \ 68 \ \ 68}[/tex]
[tex]\text{77 \ \ 77 \ \ 77 \ \ 77 \ \ 77 \ \ 77 \ \ 77 \ \ 77 \ \ 77 \ \ 77 \ \ 82 \ \ 82 \ \ 82 \ \ 82}[/tex]
[tex]\text{82 \ \ 82 \ \ 82 \ \ 82 \ \ 85 \ \ 85 \ \ 85 \ \ 53 \ \ 53 \ \ 64 \ \ 85 \ \ 85 \ \ 85 \ \ 53}[/tex]
[tex]\text{85\ \ 53 \ \ 64 \ \ 71 \ \ 53 \ \ 64\ \ 71\ \ 64 \ \ 71 \ \ 71 \ \ \ 53 \ \ \ 64 \ \ 71 \ \ 64}[/tex]
[tex]\text{G15 G16 G17 G18 G19 G20 G21 G22 \ G23 \ G24 \ G25 \ G26 \ G27}[/tex]
[tex]\text{68 \ \ \ 68 \ \ \ 68 \ \ \ 68 \ \ \ 68 \ \ \ 68 \ \ \ 77 \ \ \ 77 \ \ \ 77 \ \ \ 77 \ \ \ 77 \ \ \ 77 \ \ \ 77}[/tex]
[tex]\text{82 \ \ \ 82 \ \ \ 85 \ \ \ 85 \ \ \ 85 \ \ \ 53 \ \ \ 82 \ \ \ 82 \ \ \ 82 \ \ \ 82 \ \ \ 82 \ \ \ 82 \ \ \ 85}[/tex]
[tex]\text{53 \ \ \ 64 \ \ \ 53 \ \ \ 53 \ \ \ 64 \ \ \ 64 \ \ \ 85 \ \ \ 85 \ \ \ 85 \ \ \ 53 \ \ \ 53 \ \ \ 64 \ \ \ 53}[/tex]
[tex]\text{71\ \ \ \ 71\ \ \ \ 64\ \ \ \ \ 71\ \ \ \ 71\ \ \ \ 71\ \ \ \ 53\ \ \ \ 64\ \ \ \ 71\ \ \ 64\ \ \ \ 71\ \ \ \ 71\ \ \ \ 64}[/tex]
[tex]\text{G28 G29 G30 G31 G32 G33 G34 \ G35} \\ \\ 77 \ \ \ \ 77 \ \ 77 \ \ \ \ 82\ \ \ \ 82 \ \ \ 82 \ \ \ 82 \ \ \ \ \ 85 \\ \\ 85 \ \ \ 85 \ \ \ 53 \ \ \ \ 85 \ \ \ 85 \ \ \ 85 \ \ \ \ 53 \ \ \ 53 \\ \\ 53 \ \ \ 64 \ \ 64 \ \ \ 53 \ \ \ \ 53 \ \ \ 64 \ \ \ \ 64\ \ \ 64 \\ \\ 71 \ \ 71 \ \ \ 71 \ \ 64 \ \ \ 71 \ \ \ \ 71 \ \ \ \ 71 \ \ \ \ 71[/tex]
Group B
[tex]\text{G1 \ G2 \ G3\ G4\ \ G5\ \ G6\ \ G7\ \ G8 \ \ G9\ \ G10\ \ G11\ \ G12\ \ G13\ G14 \ G15}[/tex]
[tex]\tet{53 \ \ 85 \ \ \ \ 85 \ \ \ \ 85\ \ \ \ 82 \ \ \ \ 82\ \ \ \ 82 \ \ \ \ 82\ \ \ \ 82 \ \ \ \ 82 \ \ \ \ 77\ \ \ \ 77\ \ \ \ 77\ \ \ \ 77\ \ \ \ 77}[/tex]
[tex]\text{64 \ \ \ 64 \ \ \ 53 \ \ \ 53 \ \ \ 64 \ \ \ 53 \ \ \ 53 \ \ \ 85 \ \ \ 85 \ \ \ 85 \ \ \ 64 \ \ \ 53 \ \ \ 53 \ \ \ 85 \ \ \ 85}[/tex]
[tex]\text{71 \ \ \ 71 \ \ \ 71 \ \ \ 64 \ \ \ 71 \ \ \ 71 \ \ \ 64 \ \ \ 71 \ \ \ 64 \ \ \ 53 \ \ \ 71 \ \ \ 71 \ \ \ 64 \ \ \ 71 \ \ \ 64}[/tex]
[tex]\text{G16 \ G17 \ G18 \ G19 \ G20 \ G21 \ G22\ \ G23\ \ G24\ \ G25 \ \ G26 \ \ G27\ \ G28}[/tex]
[tex]\text{77\ \ \ \ 77\ \ \ \ 77\ \ \ \ \ 77\ \ \ \ \ 77\ \ \ \ \ 68\ \ \ \ 68\ \ \ \ 68\ \ \ \ 68\ \ \ \ 68\ \ \ \ \ 68\ \ \ \ \ 68\ \ \ \ \ 68}[/tex]
[tex]\text{85 \ \ \ \ 82\ \ \ \ 82 \ \ \ \ 82 \ \ \ \ 82 \ \ \ \ 64 \ \ \ \ 53 \ \ \ \ 53 \ \ \ \ 85 \ \ \ \ 85\ \ \ \ 85 \ \ \ \ 82\ \ \ \ 82}[/tex]
[tex]\text{53\ \ \ \ 71\ \ \ \ 64\ \ \ \ 53\ \ \ \ 85\ \ \ \ 71\ \ \ \ 71\ \ \ \ 64\ \ \ \ 71\ \ \ \ 64\ \ \ \ 53\ \ \ \ 71\ \ \ \ 64}[/tex]
[tex]\text{ G29 \ G30\ G31 \ G32 \ G33 \ G34 \ G35} \\ \\ \text{68 \ \ \ 68 \ \ \ 68 \ \ \ \ 68 \ \ \ \ 68 \ \ \ 68 \ \ \ \ \ 68} \\ \\ \text{82 \ \ \ 82 \ \ \ \ 77 \ \ \ \ 77 \ \ \ \ 77 \ \ \ \ 77 \ \ \ \ 77} \\ \\ \text{53 \ \ \ 85 \ \ \ \ 71 \ \ \ \ 64 \ \ \ \ 53\ \ \ \ 85 \ \ \ \ 82} \\ \\[/tex]
The accompanying data below computes the distinctions for each group:
[tex]difference <- colMeans(groupA) - colMeans(groupB)[/tex]
[tex]\text{G1 G2 G3 G4 G5 G6 G7 G8 G9 \ G10 G11 G12 G13 G14 G15} \\ \\ \text{15 -3.3 3.1 7.2 -1.6 4.8 8.9 -14 -9.8 -3.3 1.3 \ 7.8 \ 12 \ -11 \ \ -6.8}[/tex]
[tex]\text{G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28} \\ \\ \text{-0.42 \ -9.2\ -5.1\ 1.3 \ -17\ \ 6.6 \ \ 13 \ 17 \ \ -5.7\ -1.6 \ \ 4.8 \ \ -3.9 \ \ 0.17}[/tex]
[tex]\text{ G29\ \ G30 \ G31 \ G32 \ \ G33 \ G34 \ \ G35} \\ \\ \text{6.6 \ \ \ -12 \ \ \ -1 \ \ \ 3.1 \ \ \ 9.5 \ \ \ -9.2 \ \ \ -7.4}[/tex]
The two-sided p-value is the extent of contrasts between test midpoints as large or bigger in supreme value than the primary group. The cat function makes the outcomes simpler to peruse.
p <- sum (aba(difference)>=difference[1])/35
cat(p)
= 0.086