Respuesta :
Solution :
Here,
[tex]$X_{iR}$[/tex] = the number of the barrels mixed i to manufacture the regular gasoline
[tex]$X_{iS}$[/tex] = the number of the barrels mixed i to manufacture the supreme gasoline.
The [tex]$\text{selling price}$[/tex] of each of the barrel of both gasoline is [tex]$\$ 21$[/tex] and [tex]$\$25$[/tex]. So the total [tex]$\text{selling price}$[/tex] of both types of gasoline is represented by :
[tex]$21 \times \sum X_{iR} +25 \times \sum X_{iS}$[/tex]
The cost prices of one barrel of the three types of input are 17.25, 1575 and 17.75.
So the total price is represented by :
[tex]$17.25 \times (X_{iR}+X_{iS})+15.75 \times (X_{2R}+X_{2S})+17.75 \times (X_{3R}+X_{3S})$[/tex]
The company wants to increase the profit. So maximize objective function will be used.
Max Z = [tex]$(21. \times \sum X_{iR} +24 \times \sum X_{iS})-[17.25 \times (X_{iR}+X_{iS})+17.75 \times (X_{2R}+X_{2S})+17.75 \times (X_{3R}+X_{3S})]$[/tex]The company has 150,000 barrels of input 1 available. So,
[tex]$X_{1R}+ X_{1S} \leq 150,000$[/tex]
[tex]$X_{2R}+ X_{2S} \leq 350,000$[/tex]
[tex]$X_{3R}+ X_{3S} \leq 300,000$[/tex]
The company got an order to sell 300,000 barrels of regular and 450,000 barrels of supreme gasoline. So,
[tex]$X_{1R}+X_{2R}+X_{3R} = 300,000$[/tex]
[tex]$X_{1S}+X_{2S}+X_{3S} = 450,000$[/tex]
The company wishes the regular gasoline to have octane number of at least 90. So,
[tex]$\frac{100 \times X_{1R}+87 \times X_{2R} +10 \times X_{3R}}{\sum X_{iR}}\geq 90$[/tex]
The company wishes the supreme gasoline to have octane number of at least 97. So,
[tex]$\frac{100 \times X_{1S}+87 \times X_{2S} +10 \times X_{3S}}{\sum X_{iR}}\geq 97$[/tex]
Formulating the LP model :
Max :
[tex]$[21 \times \sum X_{iR}+25 \times \sum X_{iS}]$[/tex] [tex]$-[17.25 \times (X_{1R}+X_{1S})+15.75 \times (X_{2R}+X_{2S})+17.75 \times (X_{3R}+X_{3S})]$[/tex]
Subject to :
[tex]$X_{1R}+ X_{1S} \leq 150,000$[/tex]
[tex]$X_{2R}+ X_{2S} \leq 350,000$[/tex]
[tex]$X_{3R}+ X_{3S} \leq 300,000$[/tex]
Also,
[tex]$X_{1R}+X_{2R}+X_{3R} = 300,000$[/tex]
[tex]$X_{1S}+X_{2S}+X_{3S} = 450,000$[/tex]
[tex]$\frac{100 \times X_{1R}+87 \times X_{2R} +10 \times X_{3R}}{\sum X_{iR}}\geq 90$[/tex]
[tex]$\frac{100 \times X_{1S}+87 \times X_{2S} +10 \times X_{3S}}{\sum X_{iR}}\geq 97$[/tex]