Respuesta :
Answer:
a) the acceleration of the particle is ( v[tex]_f[/tex]² - v[tex]_i[/tex]² ) / 2as
b) the integral W = [tex]\frac{1}{2}[/tex]m( [tex]_f[/tex]² - v[tex]_i[/tex]² )
Explanation:
Given the data in the question;
force on particle F = ma
displacement s = x[tex]_f[/tex] - x[tex]_i[/tex]
work done on the particle W = Fs = mas
we know that; change in energy = work done { work energy theorem }
[tex]\frac{1}{2}[/tex]m( v[tex]_f[/tex]² - v[tex]_i[/tex]² ) = mas
[tex]\frac{1}{2}[/tex]( v[tex]_f[/tex]² - v[tex]_i[/tex]² ) = as
( v[tex]_f[/tex]² - v[tex]_i[/tex]² ) = 2as
a = ( v[tex]_f[/tex]² - v[tex]_i[/tex]² ) / 2as
Therefore, the acceleration of the particle is ( v[tex]_f[/tex]² - v[tex]_i[/tex]² ) / 2as
b) Evaluate the integral W = [tex]\int\limits^{v_{f} }_{v_{i} } mvdv[/tex]
[tex]W = \int\limits^{v_{f} }_{v_{i} } mvdv[/tex]
[tex]W =m[\frac{v^{2} }{2} ]^{vf}_{vi}[/tex]
W = [tex]\frac{1}{2}[/tex]m( [tex]_f[/tex]² - v[tex]_i[/tex]² )
Therefore, the integral W = [tex]\frac{1}{2}[/tex]m( [tex]_f[/tex]² - v[tex]_i[/tex]² )