Answer:
Follows are the solution to this question:
Step-by-step explanation:
In question 1:
The answer is "option b".
In question 2:
[tex]N= 11 \\\\r=7\\\\n=4\\\\p(y)=\frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}}[/tex]
similarly
[tex]p(3)+p(4) = \frac{\binom{7}{3} \binom{11-7}{4-3}}{\binom{11}{4}} +\frac{\binom{7}{4} \binom{11-7}{4-4}}{\binom{11}{4}}[/tex]
[tex]=0.4232 +0.1061\\\\=0.5303[/tex]
In question 3:
[tex]\mu =n\\\\\frac{r}{N} = 4 \times \frac{7}{11}= \frac{28}{11}=2.5454 \\\\\sigma= n \cdot \frac{r}{N} \frac{N-r}{N} \frac{N-n}{N-1}\\\\[/tex]
[tex]= 4 \times \frac{7}{11} \times \frac{4}{11} \times \frac{7}{10}\\\\=0.6479[/tex]