Answer:
[tex](a)[/tex] [tex]A_n = A_{n-1}(1.005) - 600[/tex] where [tex]A_0 = 30000[/tex]
(b) Above $150
Explanation:
Given
[tex]Loan = \$30000[/tex]
[tex]Rate =6\%[/tex] --- annually
Solving (a): Recursion for the amount at the end of n month
The base case is:
[tex]A(0) = 30000[/tex]
Next, we calculate the monthly rate (r)
[tex]r = \frac{Annual\ Rate}{12}[/tex]
[tex]r = \frac{6\%}{12}[/tex]
[tex]r = 0.5\%[/tex]
[tex]r = 0.005[/tex]
The loan amount remaining at the end of month n is then calculated as:
[tex]A_n = A_{n-1}*(1 + r) - 600[/tex] ---[The 600 represents the monthly payment]
[tex]A_n = A_{n-1}*(1 + 0.005) - 600[/tex]
[tex]A_n = A_{n-1}(1.005) - 600[/tex]
Solving (b):
Suppose the borrower requests for a lower monthly payment, then the following condition will exist:
[tex]P > A_{n-1} *0.005[/tex]
i.e. the monthly payment will exceed the monthly interest
Let [tex]n= 1[/tex]
[tex]P > A_{1-1} *0.005[/tex]
[tex]P > A_0 *0.005[/tex]
Substitute 30000 for [tex]A_0[/tex]
[tex]P > 30000 *0.005[/tex]
[tex]P > 150[/tex]
His monthly payment must exceed $150