Answer:
[tex]CI = (0.17 - 0.27)\± 1.65\sqrt{\frac{(0.17)*(0.83) + (0.27)*(0.73)}{200}}[/tex]
Step-by-step explanation:
Given
[tex]n = 200[/tex]
[tex]x_1 = 34[/tex] -- City C
[tex]x_2 = 54[/tex] --- City K
Required
Determine the 90% confidence interval
This is calculated using:
[tex]CI = \bar x \± z\frac{\sigma}{\sqrt n}[/tex]
Calculating [tex]\bar x[/tex]
[tex]\bar x = \bar x_1 - \bar x_2[/tex]
[tex]\bar x = \frac{x_1}{n} - \frac{x_2}{n}[/tex]
[tex]\bar x = \frac{34}{200} - \frac{54}{200}[/tex]
[tex]\bar x = 0.17 - 0.27[/tex]
For a 90% confidence level, the z-score is 1.65. So:
[tex]z = 1.65[/tex]
Calculating the standard deviation [tex]\sigma[/tex]
[tex]\sigma = \sqrt{(\bar x_1)*(1 - \bar x_1) + (\bar x_2)*(1 - \bar x_2) }[/tex]
So:
[tex]\sigma = \sqrt{(0.17)*(1 - 0.17) + (0.27)*(1 - 0.27) }[/tex]
[tex]\sigma = \sqrt{(0.17)*(0.83) + (0.27)*(0.73)}[/tex]
So:
[tex]CI = (0.17 - 0.27)\± 1.65\frac{\sqrt{(0.17)*(0.83) + (0.27)*(0.73)}}{\sqrt {200}}[/tex]
[tex]CI = (0.17 - 0.27)\± 1.65\sqrt{\frac{(0.17)*(0.83) + (0.27)*(0.73)}{200}}[/tex]