Answer:
4z(4z+3)
Step-by-step explanation:
to understand this
you need to know about:
let's solve:
factorize the first expression:
- 26z³(32z²-18)
- 26z³×2(16z²-9)
- 52z³(16z²-9)
- 52z³(4z-3)(4z+3)
divide:
- [tex] \sf \frac{ \cancel{52 {z}^{3}} \: ^{ \displaystyle ^{4 {z} } } \bcancel{ (4 {z} - 3 )}(4z + 3) ^{ ^{} } } { \cancel{13 {z}^{2}} \: \: \bcancel{(4z - 3) }} [/tex]
4z(4z+3)