Answer:
D
Step-by-step explanation:
The area formula for a trapezoid is [tex]A=\frac{b_1+b_2}{2}*h[/tex], where [tex]A[/tex] is the trapezoid's area, [tex]b_1[/tex] and [tex]b_2[/tex] are the trapezoid's bases, or parallel sides, and [tex]h[/tex] is the trapezoid's height.
We are given that [tex]A=120[/tex], and from the diagram, we see that [tex]h=8[/tex]. Therefore, all we have to do to find [tex]b_1+b_2[/tex] is substitute the given values into the area formula. Therefore:
[tex]A=\frac{b_1+b_2}{2}*h[/tex]
[tex]120=\frac{b_1+b_2}{2} *8[/tex] (Substitute the given values into the equation)
[tex]120=(b_1+b_2)*4[/tex] (Simplify RHS)
[tex]\frac{120}{4}=\frac{(b_1+b_2)*4}{4}[/tex] (Divide both sides of the equation by [tex]4[/tex] to get rid of [tex]b_1+b_2[/tex]'s coefficient)
[tex]b_1+b_2=30[/tex] (Simplify, Symmetric Property of Equality)
Hope this helps!