Answer:
see the answers
Step-by-step explanation:
to understand this
you need to know about:
let's solve:
- [tex] iv) \sf factor \: out \: 2 {l}^{2} \: from \: the \: trimonal : \\ \sf \frac{2 {l}^{2} ( {2l}^{3} - 3 {l}^{2} + {4l}) }{ {2l}^{2} } [/tex]
- [tex] \sf cancel \: 2 {l}^{2} : \\ \sf \frac{ \cancel{2 {l}^{2} } \: ^{1} ( {2l}^{3} - 3 {l}^{2} + {4l}) }{ \cancel{ {2l}^{2}} \: ^{1} } \\ 2 {l}^{3} - {3l}^{2} + 4l[/tex]
------------------------------------------------
- [tex] vi) \sf factor \: out \: - 3p: \\ \frac{ - 3p( - {p}^{2} + {3p}q + 2 {q}^{2} ) }{ - 3p} [/tex]
- [tex]\sf cancel - 3p: \\ \frac{ \cancel{ - 3p}( - {p}^{2} + {3p}q + 2 {q}^{2} ) }{ \cancel{- 3p} } \\ - {p}^{2} + 3pq + 2 {q}^{2} [/tex]