Answer:
Volume of the prop = 706.5 in³
Step-by-step explanation:
Volume of the prop given in the picture = Volume of hemisphere + Volume of the cone
Volume of the hemisphere = [tex]\frac{2}{3}\pi r^{3}[/tex]
where 'r' = radius of the hemisphere
For r = 5 in,
Volume of the hemisphere = [tex]\frac{2}{3}(3.14)(5)^{3}[/tex]
= 261.67 in³
Volume of a cone = [tex]\frac{1}{3}\pi r^{2}h[/tex]
Here r = radius of the circular base
h = height of the cone
For 'r' = 5 in and h 17 in.
Volume of the cone = [tex]\frac{1}{3}(3.14)(5)^2(17)[/tex]
= 444.83 in³
Volume of the prop = 261.67 + 444.83
= 706.5 in³