The sum of two polynomials is 8d5 – 3c3d2 + 5c2d3 – 4cd4 + 9. If one addend is 2d5 – c3d2 + 8cd4 + 1, what is the other addend?

6d5 – 2c3d2 + 5c2d3 – 12cd4 + 8
6d5 – 4c3d2 + 3c2d3 – 4cd4 + 8
6d5 – 4c3d2 + 5c2d3 – 12cd4 + 8
6d5 – 2c3d2 – 3c2d3 – 4cd4 + 8

Respuesta :

Answer:

a. [tex]x = 6d^5 - 2c^3d^2 + 5c^2d^3 - 12cd^4 + 8[/tex]

Step-by-step explanation:

Given that

[tex]8d^5 + 3c^3d62 + 5c^2d^3 - 4cd^4 + 9[/tex]

Now

if one is added i.e.

[tex]2d^5 - c^3d^2 + 8cd^4 + 1[/tex]

Now let us assume the other polynomial be x

So,

[tex]8d^5 + 3c^3d62 + 5c^2d^3 - 4cd^4 + 9 = x + (2d^5 - c^3d^2 + 8cd^4 + 1)\\\\x = 8d^5 + 3c^3d62 + 5c^2d^3 - 4cd^4 + 9 - (2d^5 - c^3d^2 + 8cd^4 + 1)\\\\[/tex]

[tex]x = (8d^5 - 2d^5) + (-3c^3d^2 + c^3d^2) + 5c^2d^3+ (-4cd^4-8cd^4) + (9-1)\\\\x = 6d^5 - 2c^3d^2 + 5c^2d^3 - 12cd^4 + 8[/tex]

Answer:

a

Step-by-step explanation:

just use it mannnn