Respuesta :

Answer:

RS = 22.5 feet, RT = 12.5 feet, and <R = [tex]34^{o}[/tex]

Step-by-step explanation:

Cosine rule can be applied only when given the three sides of a triangle, or two sides and an included angle. Otherwise, sine rule is applied.

i. <R + <T + <S = 180 (sum of angles in a triangle)

<R + 116 + 30 = 180

<R = 180 - 146

    = 34

<R = [tex]34^{o}[/tex]

In the given question, since we have two angles and one side we apply the sine rule.

ii. [tex]\frac{ST}{Sin R}[/tex] = [tex]\frac{RS}{Sin T}[/tex]

[tex]\frac{14}{Sin 34}[/tex] = [tex]\frac{RS}{Sin 116}[/tex]

RS = [tex]\frac{14*0.8988}{0.5592}[/tex]

    = 22.5021

RS = 22.5 feet

iii. Also,

[tex]\frac{ST}{Sin R}[/tex] = [tex]\frac{RT}{Sin S}[/tex]

[tex]\frac{14}{Sin 34}[/tex] = [tex]\frac{RT}{Sin 30}[/tex]

RT = [tex]\frac{14*Sin 30}{Sin 34}[/tex]

    = [tex]\frac{14*0.5}{0.5592}[/tex]

    = 12.5179

RT = 12.5 feet

Thus,

RS = 22.5 feet, RT = 12.5 feet, and <R = [tex]34^{o}[/tex].