Respuesta :

Answer:

[tex]f(x) = 3(x - 1)^2-3[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 3x^2 - 6x + 6[/tex]

Required

Write as:

[tex]f(x) = a(x - h)^2 + k[/tex]

In [tex]f(x) = 3x^2 - 6x + 6[/tex], the coefficient of x is -6

Divide by 2: -3

Square: 9

Add 9 - 9 to the above equation

[tex]f(x) = 3x^2 - 6x +9-9+ 6[/tex]

Split to 2

[tex]f(x) = [3x^2 - 6x +9]-[9- 6][/tex]

[tex]f(x) = [3x^2 - 6x +9]-[3][/tex]

Factorize:

[tex]f(x) = [3x^2 - 3x -3x+9]-[3][/tex]

[tex]f(x) = [3x(x - 1) -3(x-1)]-[3][/tex]

[tex]f(x) = [(3x - 3)(x-1)]-[3][/tex]

Factorize 3x - 3

[tex]f(x) = [3(x - 1)(x-1)]-[3][/tex]

[tex]f(x) = 3(x - 1)^2-[3][/tex]

[tex]f(x) = 3(x - 1)^2-3[/tex]