Respuesta :
Answer:
[tex]\text{The solution is }x \leq -1\text{ or }x > 6[/tex]
Step-by-step explanation:
Given the two inequalities
[tex]5x - 10 > 20\text{ or }5x - 10 \leq -15[/tex]
we have to solve the above two for x.
[tex]5x - 10 > 20[/tex]
Adding 10 on both sides
[tex]5x>20+10[/tex]
[tex]5x>30[/tex]
Divide throughout by 5, we get
[tex]x>\frac{30}{5}=6[/tex]
[tex]\text{second inequality:}\thinspace 5x - 10 \leq -15[/tex]
[tex]5x - 10 \leq -15[/tex]
Adding 10 on both sides
[tex]5x \leq -15+10[/tex]
[tex]5x\leq -5[/tex]
[tex]x \leq -1[/tex]
hence, the solution is
[tex]x \leq -1\text{ or }x > 6[/tex]
which is required solution.
Option D is correct.