Respuesta :

Given:

The equation is:

[tex]3^x\times 9=3^{2n-1}[/tex]

To find:

The value of n in terms of x.

Solution:

We have,

[tex]3^x\times 9=3^{2n-1}[/tex]

It can be written as

[tex]3^x\times 3^2=3^{2n-1}[/tex]

[tex]3^{x+2}=3^{2n-1}[/tex]                [tex][\because a^ma^n=a^{m+n}][/tex]

On comparing the exponents, we get

[tex]x+2=2n-1[/tex]

Add 1 on both sides.

[tex]x+2+1=2n-1+1[/tex]

[tex]x+3=2n[/tex]

Divide both sides by 2.

[tex]\dfrac{x+3}{2}=n[/tex]

Therefore, the value of n is terms of x is [tex]n=\dfrac{x+3}{2}[/tex].