Respuesta :

Answer:

[tex]Distance = 38.57ft[/tex]

Step-by-step explanation:

Given

[tex]Base = 60[/tex]

[tex]\theta = 50[/tex]

Required

The distance between the top and John

The distance is calculated using:

[tex]sin\alpha = \frac{Distance}{Base}[/tex]

Where

[tex]\alpha = 90 - \theta[/tex] --- the angle between the diagonal line and the vertical line

[tex]\alpha = 90 - 50[/tex]

[tex]\alpha = 40[/tex]

So, we have:

[tex]Sin(40) = \frac{Distance}{60}[/tex]

[tex]Distance = 60 * sin(40)[/tex]

[tex]Distance = 60 * 0.6428[/tex]

[tex]Distance = 38.57ft[/tex]

[tex]Distance = 986 * tan(38)[/tex]

[tex]Distance = 986 * 0.7812[/tex]

[tex]Distance = 770ft[/tex] --- approximated