There is a parallelogram ABCD with diagonals AC and BD. The diagonals AC and BD intersects each other at point E. Side AB is congruent to side CD. If ∠BAC ≅ ∠DCA, the Choose... theorem can be used to show that △ABE ≅ △CDE.

Respuesta :

Answer:

SAS theorem

Step-by-step explanation:

Given

[tex]\square ABCD[/tex]

[tex]\[ \lvert \[ \lvert AB =\[ \lvert \[ \lvert CD[/tex]

[tex]\angle BAC = \angle DCA[/tex]

Required

Which theorem shows △ABE ≅ △CDE.

From the question, we understand that:

AC and BD intersects at E.

This implies that:

[tex]\[ \lvert \[ \lvert AE = \[ \lvert \[ \lvert EC[/tex]

and

[tex]\[ \lvert \[ \lvert BE = \[ \lvert \[ \lvert ED[/tex]

So, the congruent sides and angles of △ABE and △CDE are:

[tex]\[ \lvert \[ \lvert AB =\[ \lvert \[ \lvert CD[/tex] ---- S

[tex]\angle BAC = \angle DCA[/tex] ---- A

[tex]\[ \lvert \[ \lvert BE = \[ \lvert \[ \lvert ED[/tex] or [tex]\[ \lvert \[ \lvert AE = \[ \lvert \[ \lvert EC[/tex]  --- S

Hence, the theorem that compares both triangles is the SAS theorem

Otras preguntas