Respuesta :

Given:

The expressions are

(c) [tex]\left\{\left(\dfrac{2^4\times 3^6}{12^2}\right)^0\right\}^3[/tex]

(d) [tex]\dfrac{13^3\times 7^0}{\{(65\times 49)^2\}^1}[/tex]

To find:

The simplified form of the given expression.

Solution:

(c)

We have,

[tex]\left\{\left(\dfrac{2^4\times 3^6}{12^2}\right)^0\right\}^3[/tex]

We know that, zero to the power of a non-zero number is always 1. So, [tex]\left(\dfrac{2^4\times 3^6}{12^2}\right)^0=1[/tex]

[tex]\left\{\left(\dfrac{2^4\times 3^6}{12^2}\right)^0\right\}^3=(1)^3[/tex]

[tex]\left\{\left(\dfrac{2^4\times 3^6}{12^2}\right)^0\right\}^3=1[/tex]

Therefore, the value of the given expression is 1.

(d)

We have,

[tex]\dfrac{13^3\times 7^0}{\{(65\times 49)^2\}^1}[/tex]

It can be written as

[tex]\dfrac{13^3\times 7^0}{\{(65\times 49)^2\}^1}=\dfrac{13^3\times 1}{(65\times 49)^2}[/tex]

[tex]\dfrac{13^3\times 7^0}{\{(65\times 49)^2\}^1}=\dfrac{13\times 13\times 13}{(65\times 49)(65\times 49)}[/tex]

[tex]\dfrac{13^3\times 7^0}{\{(65\times 49)^2\}^1}=\dfrac{13}{(5\times 49)(5\times 49)}[/tex]

[tex]\dfrac{13^3\times 7^0}{\{(65\times 49)^2\}^1}=\dfrac{13}{60025}[/tex]

[tex]\dfrac{13^3\times 7^0}{\{(65\times 49)^2\}^1}=\dfrac{13}{60025}[/tex]

Therefore, the value of given expression is [tex]\dfrac{13}{60025}[/tex].