Respuesta :

Given:

x is directly proportional to y and inversely proportional to z.

x= 15 when y = 10 and z= 4.

To find:

The equation that connecting x, y and z.​

Solution:

It is given that, x is directly proportional to y and inversely proportional to z.

[tex]x\propto \dfrac{y}{z}[/tex]

[tex]x=\dfrac{ky}{z}[/tex]              ...(i)

Where, k is the constant of proportionality.

We have, x= 15 when y = 10 and z= 4.

[tex]15=\dfrac{k(10)}{4}[/tex]

[tex]15\times 4=10k[/tex]

[tex]60=10k[/tex]

Divide both sides by 10.

[tex]\dfrac{60}{10}=k[/tex]

[tex]6=k[/tex]

Putting k=6 in (i), we get

[tex]x=\dfrac{6y}{z}[/tex]

Therefore, the required equation is [tex]x=\dfrac{6y}{z}[/tex].