g A 4 lb weight stretches a spring 2 ft in equilibrium. It is attached to a damping mechanism with constant c. (a) Find the value of c for which the motion is critically damped. (b) If the motion is critically damped, find the displacement y(t) when the spring is initially displaced 6 inches above equilibrium and given a downward velocity of 3 ft/sec.

Respuesta :

Solution :

Given :

Weight = 4 lb

Stretched of a spring in  equilibrium,Δ = 2 ft

a). We know that

F = kΔ

4 = k x 2

k = 2 lb/ft

∴ Stiffness of the spring is, k = 2 lb/ft

Motion is critically damped.

[tex]$\epsilon = 1$[/tex]

[tex]$\epsilon=\frac{C}{C_c} = 1$[/tex]

[tex]$C=C_c[/tex]

[tex]$C=C_c=\sqrt{4k_m}[/tex]

[tex]$C=\sqrt{4 \times 2 \times \left(\frac{4}{32.174}\right)}[/tex]

C = 0.99729 lb.s/ft.

b). Displacement

   [tex]$y(t)=y_0 \sin (\omega t)$[/tex]

[tex]$\dot{y}(t)= y_0 \omega \cos (\omega t)$[/tex]

[tex]$[\dot{y}(t)]_{mon}= y_0 \omega $[/tex]

Initial displacement = 6 inches

    [tex]$y_0 = 0.5 \ ft , \ \ \ \dot y (t) = 3 \ ft/sec$[/tex]

  [tex]$\Rightarrow 3=0.5 \times \omega$[/tex]

 [tex]$\Rightarrow \omega = 6$[/tex]

Therefore, displacement :

    [tex]$y(t)=y_0 \sin (\omega t)$[/tex]

   [tex]$y(t)=0.5 \sin (6 t)$[/tex]