Respuesta :
Answer:
The correct answer is "12 rad/s"
Explanation:
The given values are,
Mass of rod,
M = 140 g
i.e.,
= 0.14 kg
Length,
L = 57 cm
i.e.,
= 0.57 m
Mass of beads,
M = 30 g
i.e.,
= 0.03 kg
Angular speed,
r = 11 cm
i.e.,
= 0.11 m
Now,
The inertia of rods will be:
= [tex]\frac{1}{12}ML ^2[/tex]
On substituting the values, we get
= [tex]\frac{1}{12}\times 0.14\times (0.57)^2[/tex]
= [tex]0.0037905 \ kg-m^2[/tex]
The inertia of beads will be:
= [tex]mr^2[/tex]
On substituting the values, we get
= [tex]0.03\times (0.11)^2[/tex]
= [tex]0.000726 \ kg-m^2[/tex]
The total inertia will be:
= [tex]Inertia \ of \ rods+Inertia \ of \ beads[/tex]
= [tex]0.0037905 + 0.000726[/tex]
= [tex]0.0045165 \ kg-m^2[/tex]
now,
The angular speed of the system will be:
⇒ [tex]L_1w_1=L_2w_2[/tex]
On substituting the values in the above equation, we get
⇒ [tex]0.0045165\times 23 = (0.0037905 + (0.03\times 0.285^2)\times 2 )\times w_2[/tex]
⇒ [tex]0.1038795 = 0.0037905 + (0.00243675\times 2 )\times w_2[/tex]
⇒ [tex]w_2 = 12 \ rad/s[/tex]