a. Find the mean of the data summarized in the given frequency distribution. Compare the computed mean to the actual mean of 53.3 degrees. Low Temperature ( ◦ F) 40 − 44 45 − 49 50 − 54 55 − 59 60 − 64 Frequency 1 4 11 6 2 The mean of the frequency distribution is ------- degrees. (Round to the nearest tenth as needed.) b. Find the standard deviation of the data summarized in the given frequency distribution.

Respuesta :

Answer:

[tex]\bar x = 50.25[/tex]

[tex]\sigma = 3.32[/tex]

Step-by-step explanation:

Given

The sumarized data

Solving (a): The mean

First, we calculate the class mid-points (x); This is the mean of the class intervals.

For 40 - 44, x = (40 + 44)/2 = 42. This is applied to all other classes.

So:

x  42   47   52    57    62

f    1      4     11      6       2

The mean is:

[tex]\bar x = \frac{\sum fx}{\sum f}[/tex]

[tex]\bar x = \frac{42 * 1 + 47 * 4 + 52 * 11 + 57 * 6 + 62 * 1}{1 + 4 + 11 + 6 + 2}[/tex]

[tex]\bar x = \frac{1206}{24}[/tex]

[tex]\bar x = 50.25[/tex]

Compared to the actual mean (53.3), the computed mean is lower

Solving (b): The standard deviation

This is calculated using:

[tex]\sigma = \sqrt{\frac{\sum(x - \bar x)^2}{\sum f}}[/tex]

So, we have:

[tex]\sigma = \sqrt{\frac{(42 - 50.25)^2+(47-50.25)^2+(52-50.25)^2+(57-50.25)^2)+(62-50.25)^2}{24}}[/tex]

[tex]\sigma = \sqrt{\frac{265.3125}{24}}[/tex]

[tex]\sigma = \sqrt{11.055}[/tex]

[tex]\sigma = 3.32[/tex]