Respuesta :
Answer:
(a) [tex]Selection = 6724520[/tex]
(b) [tex]At\ most\ 12 = 6553976[/tex]
(c) [tex]At\ most\ 8 = 6066720[/tex]
(d) [tex]At\ most\ 12\ red\ and\ at\ most\ 8\ blue = 5896638[/tex]
Step-by-step explanation:
Given
[tex]Colors = 8[/tex]
[tex]Balloons = 28[/tex] --- at least
Solving (a): 28 combinations
From the question, we understand that; a combination of 28 is to be selected. Because the order is not important, we make use of combination.
Also, because repetition is allowed; different balloons of the same kind can be selected over and over again.
So:
[tex]n => 28 + 8-1[/tex][tex]= 35[/tex]
[tex]r = 28[/tex]
[tex]Selection = ^{35}^C_{28[/tex]
[tex]Selection = \frac{35!}{(35 - 28)!28!}[/tex]
[tex]Selection = \frac{35!}{7!28!}[/tex]
[tex]Selection = \frac{35*34*33*32*31*30*29*28!}{7!28!}[/tex]
[tex]Selection = \frac{35*34*33*32*31*30*29}{7!}[/tex]
[tex]Selection = \frac{35*34*33*32*31*30*29}{7*6*5*4*3*2*1}[/tex]
[tex]Selection = \frac{33891580800}{5040}[/tex]
[tex]Selection = 6724520[/tex]
Solving (b): At most 12 red balloons
First, we calculate the ways of selecting at least 13 balloons
Out of the 28 balloons, there are 15 balloons remaining (i.e. 28 - 13)
So:
[tex]n => 15 + 8 -1 = 22[/tex]
[tex]r = 15[/tex]
Selection of at least 13 =
[tex]At\ least\ 13 = ^{22}C_{15}[/tex]
[tex]At\ least\ 13 = \frac{22!}{(22-15)!15!}[/tex]
[tex]At\ least\ 13 = \frac{22!}{7!15!}[/tex]
[tex]At\ least\ 13 = 170544[/tex]
Ways of selecting at most 12 =
[tex]At\ most\ 12 = Total - At\ least\ 13[/tex] --- Complement rule
[tex]At\ most\ 12 = 6724520- 170544[/tex]
[tex]At\ most\ 12 = 6553976[/tex]
Solving (c): At most 8 blue balloons
First, we calculate the ways of selecting at least 9 balloons
Out of the 28 balloons, there are 19 balloons remaining (i.e. 28 - 9)
So:
[tex]n => 19+ 8 -1 = 26[/tex]
[tex]r = 19[/tex]
Selection of at least 9 =
[tex]At\ least\ 9 = ^{26}C_{19}[/tex]
[tex]At\ least\ 9 = \frac{26!}{(26-19)!19!}[/tex]
[tex]At\ least\ 9 = \frac{26!}{7!19!}[/tex]
[tex]At\ least\ 9 = 657800[/tex]
Ways of selecting at most 8 =
[tex]At\ most\ 8 = Total - At\ least\ 9[/tex] --- Complement rule
[tex]At\ most\ 8 = 6724520- 657800[/tex]
[tex]At\ most\ 8 = 6066720[/tex]
Solving (d): 12 red and 8 blue balloons
First, we calculate the ways for selecting 13 red balloons and 9 blue balloons
Out of the 28 balloons, there are 6 balloons remaining (i.e. 28 - 13 - 9)
So:
[tex]n =6+6-1 = 11[/tex]
[tex]r = 6[/tex]
Selection =
[tex]^{11}C_6 = \frac{11!}{(11-6)!6!}[/tex]
[tex]^{11}C_6 = \frac{11!}{5!6!}[/tex]
[tex]^{11}C_6 = 462[/tex]
Using inclusion/exclusion rule of two sets:
[tex]Selection = At\ most\ 12 + At\ most\ 8 - (12\ red\ and\ 8\ blue)[/tex]
[tex]Only\ 12\ red\ and\ only\ 8\ blue\ = 170544+ 657800- 462[/tex]
[tex]Only\ 12\ red\ and\ only\ 8\ blue\ = 827882[/tex]
[tex]At\ most\ 12\ red\ and\ at\ most\ 8\ blue = Total - Only\ 12\ red\ and\ only\ 8\ blue[/tex]
[tex]At\ most\ 12\ red\ and\ at\ most\ 8\ blue = 6724520 - 827882[/tex]
[tex]At\ most\ 12\ red\ and\ at\ most\ 8\ blue = 5896638[/tex]